Eigenfunktionen des Drehimpulsoperators und in der Quantenmechanik 4.4
fn(x) = Pn(x) mit 0 n , Nn2 = n + , a = - 1b = 1, w(x) = 1 | (4.26) |
P0(x) = 1 P1(x) = x P2(x) = (3x2 - 1) P3(x) = (5x3 - 3x) | (4.27) |
allgemein:
Pn(x) = (x2 - 1)n | (4.28) |
P2n + 1(0) = 0 P2n(0) = (- 1)n Pn(1) = (1)n | (4.29) |
Rekursionsformel:
(n + 1)Pn + 1(x) = (2n + 1)xPn(x) - nPn - 1(x) | (4.30) |
((1 - x2) - 2x + n(n + 1))Pn(x) = 0 | (4.31) |
(1 - x2)Pn'(x) = n(Pn - 1(x) - xPn(x)) = (Pn - 1(x) - Pn + 1(x)) | (4.32) |
Pl(cos()) = Ylm(,) | (4.33) |
= = Pl(cos()) | (4.34) |