next up previous contents
Next: 4.7 Fouriereihen Up: 4. Orthogonale Funktionensysteme Previous: 4.5 Legendre'sche Polynome   Inhalt

4.6 Kugelflächenfunktionen (Spherical harmonics)

Diese bilden ein vollständiges Orthogonalsystem in zwei Dimensionen. Kugelflächenfunktionen bilden die Eigenfunktionen der Drehimpulsoperatoren $ \vec{L}^{2}_{}$ und Lz. 4.5

Für eine Liste der Kugelflächenfunktionen siehe unter [6.2]

$\displaystyle \int$d$\displaystyle \Omega$ = $\displaystyle \int_{0}^{2\pi}$d$\displaystyle \varphi$$\displaystyle \int_{0}^{\pi}$sin($\displaystyle \theta$)d$\displaystyle \theta$ = $\displaystyle \int_{0}^{2\pi}$d$\displaystyle \varphi$$\displaystyle \int_{-1}^{+1}$d (cos($\displaystyle \theta$) (4.35)

$\displaystyle \int$d$\displaystyle \Omega$$\displaystyle \overline{Y_l^m(\theta, \varphi)}$Yl'm'($\displaystyle \theta{^\prime}$,$\displaystyle \varphi{^\prime}$) = $\displaystyle \delta_{l,l'}^{}$$\displaystyle \delta_{m,m'}^{}$ (4.36)

$\displaystyle \sum_{l=0}^{\infty}$$\displaystyle \sum_{m=-l}^{l}$Ylm($\displaystyle \theta$,$\displaystyle \varphi$)$\displaystyle \overline{Y_l^m(\theta', \varphi')}$ = $\displaystyle \delta$($\displaystyle \varphi$ - $\displaystyle \varphi{^\prime}$)$\displaystyle \delta$(cos($\displaystyle \theta$) - cos($\displaystyle \theta{^\prime}$)) (4.37)

Ylm($\displaystyle \theta$,$\displaystyle \varphi$) = $\displaystyle \sqrt{{{(2l+1)(l-\vert m\vert)!} \over
{4\pi(l+\vert m\vert)!}}}$eim$\scriptstyle \varphi$Plmcos($\displaystyle \theta$) (4.38)


$\displaystyle {P_l^m(cos(\theta)) = \varepsilon_m sin^{\vert m\vert}(\theta)
{\left(d \over {d(\cos(\theta)}\right)}^m P_l(\cos(\theta))}$
    mit $\displaystyle \varepsilon_{m}^{}$ = $\displaystyle \left\{\vphantom{
\begin{array}{ll}
(-1)^m & x\leq 0 \\
1 & x<0 \\
\end{array}}\right.$$\displaystyle \begin{array}{ll}
(-1)^m & x\leq 0 \\
1 & x<0 \\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{ll}
(-1)^m & x\leq 0 \\
1 & x<0 \\
\end{array}}\right.$ (4.39)

Yl-m($\displaystyle \theta$,$\displaystyle \varphi$) = (- 1)m$\displaystyle \overline{Y_l^m(\theta, \varphi)}$ (4.40)

Yl0($\displaystyle \theta$,$\displaystyle \varphi$) = $\displaystyle \sqrt{{{2l+1} \over
{4\pi}}}$Pl(cos($\displaystyle \theta$)) (4.41)


Ylm(0,$\displaystyle \varphi$)=
$\displaystyle {\delta_{m,0}\sqrt{{{2l+1}\over {4\pi}}} \left({{\partial^2}
\ove...
...artial^2}\over {\partial \varphi^2}} +
l(l+1)\right)\;\;Y_l^m(\theta, \varphi)}$
  = 0  

cos($\displaystyle \theta$)Ylm = $\displaystyle \sqrt{{{(l+m)(l-m)} \over
{(2l-1)(2l+1)}}}$  Yl - 1m + $\displaystyle \sqrt{{{(l+m+1)(l-m+1)} \over
{(2l-1)(2l+3)}}}$  Yl + 1m (4.42)


-sin($\displaystyle \theta$)e$\scriptstyle \pm$i$\scriptstyle \varphi$Ylm=
$\displaystyle {\mp \sqrt{{{(l\mp m)(l\mp m-1)} \over {(2l-1)(2l+1)}}}
Y_{l-1}^{m\pm 1} \pm \sqrt{{{(l\pm m+2)(l\pm m+1)} \over
{(2l+1)(2l+3)}}} Y_{l+1}^{m\pm 1}}$


next up previous contents
Next: 4.7 Fouriereihen Up: 4. Orthogonale Funktionensysteme Previous: 4.5 Legendre'sche Polynome   Inhalt
Alexander Wagner
2000-04-14