next up previous contents
Next: 4.5 Legendre'sche Polynome Up: 4. Orthogonale Funktionensysteme Previous: 4.3 Laguerre'sche Funktionen   Inhalt

4.4 Sphärische Besselfunktionen

Stellen die partikulären Lösungen der Besselschen Differentialgleichung dar. 4.3

jl(x)     =    $\displaystyle \sqrt{{\pi \over {2x}}}$Jl + $\scriptstyle {1 \over
2}$(x)     =    xl$\displaystyle \left(\vphantom{-{1 \over x} {d \over {dx}}}\right.$ - $\displaystyle {1
\over x}$$\displaystyle {d \over {dx}}$ $\displaystyle \left.\vphantom{-{1 \over x} {d \over {dx}}}\right)^{l}_{}$$\displaystyle {{\sin(x)} \over x}$ (4.21)

j0(x) = $\displaystyle {{\sin(x)} \over x}$        j1(x) = $\displaystyle {{\sin(x)}\over
{x^2}}$ - $\displaystyle {{\cos(x)}\over x}$ ... (4.22)

$\displaystyle \left\{\vphantom{x^2{d^2 \over {dx^2}} + 2x {d \over dx} +
\left[x^2-l(l+1)\right]}\right.$x2$\displaystyle {d^2 \over {dx^2}}$ + 2x$\displaystyle {d \over dx}$ + $\displaystyle \left[\vphantom{x^2-l(l+1)}\right.$x2 - l (l + 1)$\displaystyle \left.\vphantom{x^2-l(l+1)}\right]$ $\displaystyle \left.\vphantom{x^2{d^2 \over {dx^2}} + 2x {d \over dx} +
\left[x^2-l(l+1)\right]}\right\}$    jl(x) = 0 (4.23)

jl'(x) = jl - 1(x) - $\displaystyle {{l+1} \over x}$jl(x) (4.24)

$\displaystyle \int_{0}^{\infty}$y2jl(yx)jl(yx')dy = $\displaystyle {\pi \over
{2x^2}}$$\displaystyle \delta$(x - x') (4.25)



Alexander Wagner
2000-04-14