next up previous contents
Next: 4.4 Sphärische Besselfunktionen Up: 4. Orthogonale Funktionensysteme Previous: 4.2 Hermite'sche Polynome   Inhalt

4.3 Laguerre'sche Funktionen

Partikuläre Lösungen der Laguerre'schen Differentialgleichung, einer speziellen hypergeometrischen Differentialgleichung. 4.2

fn(x) = Ln(k)(x) mit 0 $\displaystyle \leq$ n $\displaystyle \leq$ $\displaystyle \infty$ (4.12)

Nn2 = $\displaystyle {{n!} \over {\Gamma(n+k+1)}}$,        a = 0,        b = $\displaystyle \infty$,        w(x) = xke-x (4.13)

k rell, für ganze k ergeben sich die Laguerre-Polynome

L0(x) = 1        L1(k)(x) = k + 1 - x (4.14)

L2(k)(x) = $\displaystyle {1 \over 2}$$\displaystyle \left[\vphantom{(k+1)(k+2)-2(k+2)x+x^2 }\right.$(k + 1)(k + 2) - 2(k + 2)x + x2$\displaystyle \left.\vphantom{(k+1)(k+2)-2(k+2)x+x^2 }\right]$ (4.15)

Ln(k) = $\displaystyle {1 \over n!}$x-kex$\displaystyle {{d^n} \over {dx^n}}$(e-xxn + k) = $\displaystyle \sum_{\nu=0}^{n}$$\displaystyle \left(\vphantom{
\begin{array}{cc}
{n+k} \\
{n-\nu}
\end{array}}\right.$$\displaystyle \begin{array}{cc}
{n+k} \\
{n-\nu}
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
{n+k} \\
{n-\nu}
\end{array}}\right)$$\displaystyle {{(-x)^{\nu}}
\over {\nu!}}$ (4.16)

Lk-k(x) = (- 1)k$\displaystyle {{x^k} \over {k!}}$        Ln(k)(0) = $\displaystyle \left(\vphantom{
\begin{array}{cc}
{n+k}\\
{k}
\end{array}}\right.$$\displaystyle \begin{array}{cc}
{n+k}\\
{k}
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
{n+k}\\
{k}
\end{array}}\right)$ (4.17)

$\displaystyle \left(\vphantom{x{{d^2} \over {dx^2}} +(k+1-x){d \over
dx}+n }\right.$x$\displaystyle {{d^2} \over {dx^2}}$ + (k + 1 - x)$\displaystyle {d \over dx}$ + n$\displaystyle \left.\vphantom{x{{d^2} \over {dx^2}} +(k+1-x){d \over
dx}+n }\right)$    Ln(k)(x) = 0 (4.18)


Ln(k)$\scriptstyle \prime$(x)=-Ln - 1(k + 1)(x)=Ln(k)(x)-Ln(k + 1)(x)=
$\displaystyle {{1 \over x}(n L_n^{(k)}(x)-(n+k) L_{n-1}^{(k)}(x))}$

Fortsetzung für k nicht ganz:

Ln(k)(z) = $\displaystyle \left(\vphantom{
\begin{array}{cc}
{n+k}\\ {n}
\end{array}}\right.$$\displaystyle \begin{array}{cc}
{n+k}\\ {n}
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
{n+k}\\ {n}
\end{array}}\right)$  1F1(- n;k + 1;z) (4.20)

(1F1 ist die konfluente hypergeometrische Funktion)


next up previous contents
Next: 4.4 Sphärische Besselfunktionen Up: 4. Orthogonale Funktionensysteme Previous: 4.2 Hermite'sche Polynome   Inhalt
Alexander Wagner
2000-04-14