next up previous contents
Next: 2.3 Gradient, Divergenz, Rotation, Up: 2. Vektoranalysis, Feldtheorie Previous: 2.1 Allgemeine Beziehungen   Inhalt

2.2 Definition von grad, div, rot und $ \Delta$ in verschiedenen Koordinatensystemen

Definition der Vektoroperatoren und deren Darstellung in den gebräuchlichsten Koordinatensystemen 2.3

grad$\displaystyle \Phi$ = $\displaystyle \left\{\vphantom{
\begin{array}{ll}
\displaystyle
{{\partial \Phi...
... \theta}}
\vec{e_{\theta}} & \mbox{(Kugelkoordinaten)} \\
\end{array} }\right.$$\displaystyle \begin{array}{ll}
\displaystyle
{{\partial \Phi}\over {\partial x...
...{\partial \theta}}
\vec{e_{\theta}} & \mbox{(Kugelkoordinaten)} \\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{ll}
\displaystyle
{{\partial \Phi}...
... \theta}}
\vec{e_{\theta}} & \mbox{(Kugelkoordinaten)} \\
\end{array} }\right.$ (2.12)

div$\displaystyle \vec{A}\,$ = $\displaystyle \left\{\vphantom{
\begin{array}{l}
\displaystyle
{{\partial A_x}\...
...sin(\theta)}}{{\partial A_{\phi}}\over {\partial \phi}} \\
\end{array}}\right.$$\displaystyle \begin{array}{l}
\displaystyle
{{\partial A_x}\over {\partial x}}...
...ver {r \sin(\theta)}}{{\partial A_{\phi}}\over {\partial \phi}} \\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{l}
\displaystyle
{{\partial A_x}\o...
...sin(\theta)}}{{\partial A_{\phi}}\over {\partial \phi}} \\
\end{array}}\right.$ (2.13)

rot$\displaystyle \vec{A}\,$ = $\displaystyle \left\{\vphantom{
\begin{array}{l}
\displaystyle
\left(
{{\partia...
... A_r}\over {\partial \theta}}
\right) \vec{e_{\phi}} \\ \\
\end{array}}\right.$$\displaystyle \begin{array}{l}
\displaystyle
\left(
{{\partial A_z}\over {\part...
...\partial A_r}\over {\partial \theta}}
\right) \vec{e_{\phi}} \\ \\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{l}
\displaystyle
\left(
{{\partial...
... A_r}\over {\partial \theta}}
\right) \vec{e_{\phi}} \\ \\
\end{array}}\right.$ (2.14)

$\displaystyle \Delta$$\displaystyle \Phi$ = $\displaystyle \left\{\vphantom{
\begin{array}{l}
\displaystyle
{{\partial^2 \Ph...
...\theta)}} {{\partial^2 \Phi}\over {\partial
\phi^2}} \\ \\
\end{array}}\right.$$\displaystyle \begin{array}{l}
\displaystyle
{{\partial^2 \Phi}\over {\partial ...
... \sin^2(\theta)}} {{\partial^2 \Phi}\over {\partial
\phi^2}} \\ \\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{l}
\displaystyle
{{\partial^2 \Phi...
...\theta)}} {{\partial^2 \Phi}\over {\partial
\phi^2}} \\ \\
\end{array}}\right.$ (2.15)



Alexander Wagner
2000-04-14