next up previous contents
Next: 2.2 Definition von grad, Up: 2. Vektoranalysis, Feldtheorie Previous: 2. Vektoranalysis, Feldtheorie   Inhalt

2.1 Allgemeine Beziehungen

Im folgenden einige grundlegende Gleichungen der Vektorrechnung und Beziehungen zwischen den Vektorprodukten2.1


$\displaystyle \vec{A}\,$ . $\displaystyle \vec{B}\,$ x $\displaystyle \vec{C}\,$=$\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$ . $\displaystyle \vec{C}\,$ $\displaystyle \equiv$ ($\displaystyle \vec{A}\,$,$\displaystyle \vec{B}\,$,$\displaystyle \vec{C}\,$)=($\displaystyle \vec{B}\,$,$\displaystyle \vec{C}\,$,$\displaystyle \vec{A}\,$)=($\displaystyle \vec{C}\,$,$\displaystyle \vec{A}\,$,$\displaystyle \vec{B}\,$)=
-($\displaystyle \vec{A}\,$,$\displaystyle \vec{C}\,$,$\displaystyle \vec{B}\,$)=-($\displaystyle \vec{C}\,$,$\displaystyle \vec{B}\,$,$\displaystyle \vec{A}\,$)=-($\displaystyle \vec{B}\,$,$\displaystyle \vec{A}\,$,$\displaystyle \vec{C}\,$)

$\displaystyle \vec{A}\,$ x ($\displaystyle \vec{B}\,$ x $\displaystyle \vec{C}\,$) = ($\displaystyle \vec{A}\,$ . $\displaystyle \vec{C}\,$)$\displaystyle \vec{B}\,$ - ($\displaystyle \vec{A}\,$ . $\displaystyle \vec{B}\,$)$\displaystyle \vec{C}\,$ (2.2)

$\displaystyle \vec{A}\,$ x ($\displaystyle \vec{B}\,$ x $\displaystyle \vec{C}\,$) + $\displaystyle \vec{B}\,$ x ($\displaystyle \vec{C}\,$ x $\displaystyle \vec{A}\,$) + $\displaystyle \vec{C}\,$ x ($\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$) = 0 (2.3)

($\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$) . ($\displaystyle \vec{C}\,$ x $\displaystyle \vec{D}\,$) = $\displaystyle \vec{A}\,$ . ($\displaystyle \vec{B}\,$ x ($\displaystyle \vec{C}\,$ x $\displaystyle \vec{D}\,$)) = ($\displaystyle \vec{A}\,$ . $\displaystyle \vec{B}\,$)($\displaystyle \vec{B}\,$ . $\displaystyle \vec{D}\,$) - ($\displaystyle \vec{A}\,$ . $\displaystyle \vec{D}\,$)($\displaystyle \vec{B}\,$ . $\displaystyle \vec{D}\,$) (2.4)

($\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$) x ($\displaystyle \vec{C}\,$ x $\displaystyle \vec{D}\,$) = ($\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$ . $\displaystyle \vec{D}\,$)$\displaystyle \vec{C}\,$ - ($\displaystyle \vec{A}\,$ x $\displaystyle \vec{B}\,$ . $\displaystyle \vec{C}\,$)$\displaystyle \vec{D}\,$ (2.5)

Der vollkommen antisymmetrische Tensor $ \varepsilon_{ijk}^{}$ 2.2


($\displaystyle \vec{a}\,$ x $\displaystyle \vec{b}\,$)i = $\displaystyle \varepsilon_{ijk}^{}$ajbk (2.6)
$\displaystyle \varepsilon_{ijk}^{}$ = $\displaystyle \varepsilon_{kji}^{}$    tex2html_image_mark>#tex2html_wrap_indisplay3321# zyklisch (2.7)
$\displaystyle \varepsilon_{ijk}^{}$ = - $\displaystyle \varepsilon_{jik}^{}$    tex2html_image_mark>#tex2html_wrap_indisplay3327# antisymmetrisch (2.8)
$\displaystyle \varepsilon_{kij}^{}$$\displaystyle \varepsilon_{klm}^{}$ = $\displaystyle \delta_{il}^{}$$\displaystyle \delta_{jm}^{}$ - $\displaystyle \delta_{im}^{}$$\displaystyle \delta_{jl}^{}$ (2.9)


next up previous contents
Next: 2.2 Definition von grad, Up: 2. Vektoranalysis, Feldtheorie Previous: 2. Vektoranalysis, Feldtheorie   Inhalt
Alexander Wagner
2000-04-14