next up previous contents
Next: Inhalt Up: 9. Quantenfeldtheorie Previous: 9.1 -Matrizen   Inhalt

9.2 4-Dimensionaler $ \varepsilon$-Tensor


$\displaystyle \varepsilon^{\alpha \beta \gamma \delta}_{}$$\displaystyle \varepsilon_{\alpha \beta \gamma \delta}^{}$ = 24 (9.13)
$\displaystyle \varepsilon^{\alpha \beta \mu \nu}_{}$$\displaystyle \varepsilon_{\alpha \beta \mu \nu}^{}$ = -6$\displaystyle \delta^{\mu \cdot}_{\cdot \nu }$ (9.14)
$\displaystyle \varepsilon^{\alpha \beta \mu \nu}_{}$$\displaystyle \varepsilon_{\alpha \beta \rho \sigma}^{}$ = -2$\displaystyle \left(\vphantom{ \delta^{\mu\cdot}_{\cdot \nu}
\delta^{\nu\cdot}_...
...\sigma} - \delta^{\mu\cdot}_{\cdot \nu}
\delta^{\mu\cdot}_{\cdot \rho} }\right.$$\displaystyle \delta^{\mu \cdot}_{\cdot \nu }$$\displaystyle \delta^{\nu\cdot}_{\cdot \sigma}$ - $\displaystyle \delta^{\mu \cdot}_{\cdot \nu }$$\displaystyle \delta^{\mu\cdot}_{\cdot \rho}$ $\displaystyle \left.\vphantom{ \delta^{\mu\cdot}_{\cdot \nu}
\delta^{\nu\cdot}_...
...\sigma} - \delta^{\mu\cdot}_{\cdot \nu}
\delta^{\mu\cdot}_{\cdot \rho} }\right)$ (9.15)



Alexander Wagner
2000-04-14