next up previous contents
Next: 3.6 Fourierintegrale Up: 3. Die Dirac'sche -Funktion Previous: 3.4 Dreidimensionale -Funktion   Inhalt

3.5 Logarithmus, Hauptwert, $ \delta_{\pm }^{}$

Für den komplexen Logarithmus ist

$\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$ln(x$\displaystyle \pm$i$\displaystyle \varepsilon$) = ln| x|$\displaystyle \pm$i$\displaystyle \pi$$\displaystyle \Theta$(x) (3.17)

Durch diffenenzieren folgt:

$\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$$\displaystyle {1 \over {x \pm i\varepsilon}}$ = P$\displaystyle {1
\over x}$$\displaystyle \mp$i$\displaystyle \pi$$\displaystyle \delta$(x) = : $\displaystyle \mp$2$\displaystyle \pi$i$\displaystyle \delta_{\pm}^{}$(x) (3.18)

Dabei bedeutet P den Cauchy'schen Hauptwert:

(P$\displaystyle {1
\over x}$,$\displaystyle \varphi$(x)) = $\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$$\displaystyle \left(\vphantom{\int_{-\infty}^{-\varepsilon} +
\int_{\varepsilon}^{\infty}}\right.$$\displaystyle \int_{-\infty}^{-\varepsilon}$ + $\displaystyle \int_{\varepsilon}^{\infty}$ $\displaystyle \left.\vphantom{\int_{-\infty}^{-\varepsilon} +
\int_{\varepsilon}^{\infty}}\right)$$\displaystyle {\varphi(x) \over x}$dx (3.19)

$\displaystyle \delta_{\pm}^{}$(- x) = $\displaystyle \delta_{\mp}^{}$(x) (3.20)

x$\displaystyle \delta_{\pm}^{}$(x) = $\displaystyle \mp$$\displaystyle {1 \over {2 \pi i}}$ (3.21)

$\displaystyle \delta_{+}^{}$(x) + $\displaystyle \delta_{-}^{}$(x) = $\displaystyle {1 \over {2 \pi i}}$$\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$($\displaystyle {1 \over {x-i \varepsilon}}$ - $\displaystyle {1 \over {x+i
\varepsilon}}$) = $\displaystyle \delta$(x) (3.22)

$\displaystyle \delta_{+}^{}$(x) - $\displaystyle \delta_{-}^{}$(x) = - $\displaystyle {1 \over {2 \pi i}}$$\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$($\displaystyle {1 \over {x-i \varepsilon}}$ + $\displaystyle {1 \over {x+i
\varepsilon}}$) = $\displaystyle {i \over \pi}$P$\displaystyle {1
\over x}$ (3.23)

P$\displaystyle {1
\over x}$ = $\displaystyle \lim_{\varepsilon\rightarrow 0}^{}$$\displaystyle {x \over
{x^2+\varepsilon^2}}$ (3.24)



Alexander Wagner
2000-04-14