next up previous index
Next: Index Up: 6. Die Bornsche Reihe Previous: 6. Die Bornsche Reihe   Index

6.1 Born'sche N„herung

t($\displaystyle \vec{p}{^\prime}$ $\displaystyle \leftarrow$ $\displaystyle \vec{p}\,$) $\displaystyle \approx$ t(1)($\displaystyle \vec{p}{^\prime}$ $\displaystyle \leftarrow$ $\displaystyle \vec{p}\,$) = $\displaystyle \bra$$\displaystyle \vec{p}{^\prime}$V$\displaystyle \ket$$\displaystyle \vec{p}\,$ (77)

Damit folgt fr die Amplitude

f ($\displaystyle \vec{p}{^\prime}$ $\displaystyle \leftarrow$ $\displaystyle \vec{p}\,$) $\displaystyle \approx$ - (2$\displaystyle \pi$)2m$\displaystyle \bra$$\displaystyle \vec{p}{^\prime}$V$\displaystyle \ket$$\displaystyle \vec{p}\,$ = - $\displaystyle {m \over 2 \pi}$$\displaystyle \int$d3xe-i$\scriptstyle \vec{q}\,$ . $\scriptstyle \vec{x}\,$V($\displaystyle \vec{x}\,$) (78)

wobei $ \vec{p}\,$ = $ \vec{p}{^\prime}$ - $ \vec{p}\,$ der Impulsbertrag ist, d.h.

q = 2psin$\displaystyle \left(\vphantom{ {\theta \over 2}}\right.$$\displaystyle {\theta \over 2}$ $\displaystyle \left.\vphantom{ {\theta \over 2}}\right)$ (79)


next up previous index
Next: Index Up: 6. Die Bornsche Reihe Previous: 6. Die Bornsche Reihe   Index
Alexander Wagner
2000-04-15